Rabu, 11 Maret 2015

Generasi Perkembangan Serat Optik

Berdasarkan penggunaannya maka sistem komunikasi serat optik (SKSO) dibagi menjadi 4tahap generasi yaitu :
1. Generasi pertama (mulai 1975)
Sistem masih sederhana dan menjadi dasar bagi sistemgenerasi berikutnya, terdiri dari : alat encoding : mengubah input (misal suara) menjadi sinyallistrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. serat silika : sebagai penghantar sinyal gelombang repeater :sebagai penguat gelombang yang melemah di perjalanan receiver : mengubah sinyalgelombang menjadi sinyal listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula iamengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuatdan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.
2. Generasi kedua (mulai 1981)
Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe modetunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengansendirinya transmitter juga diganti dengan diode laser, panjang gelombang yangdipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitastransmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.
3. Generasi ketiga (mulai 1982)
Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjanggelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapatdibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.
4. Generasi keempat (mulai 1984)
Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukanmodulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemahintensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitastransmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitassistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapatdisangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yangakan datang.
5. Generasi kelima (mulai 1989)
Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater padagenerasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP(panjang gelombang 1,48 mm) dan sejumlah serat optik dengan doping erbium (Er) diterasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akantereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat danlewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisiterangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akandiperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang,sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi padarepeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Padaawal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitastransmisi sudah menembus harga 50 ribu Gb.km/s.
6. Generasi keenam
Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasidalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapakomponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakaninformasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing).Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kalilipat lebih banyak jika dibunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnyasama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnyamelebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi,sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangatmenguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapatdiabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akanmampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memilikikapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnyayang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai olehteknologi serat optik

Tidak ada komentar:

Posting Komentar